28 research outputs found

    SISO Space Reference FOM - Tools and Testing

    Get PDF
    The Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (SpaceFOM) version 1.0 is nearing completion. Earlier papers have described the use of the High Level Architecture (HLA) in Space simulation as well as technical aspects of the SpaceFOM. This paper takes a look at different SpaceFOM tools and how they were used during the development and testing of the standard.The first organizations to develop SpaceFOM-compliant federates for SpaceFOM development and testing were NASA's Johnson Space Center (JSC), the University of Calabria (UNICAL), and Pitch Technologies.JSC is one of NASA's lead centers for human space flight. Much of the core distributed simulation technology development, specifically associated with the SpaceFOM, is done by the NASA Exploration Systems Simulations (NExSyS) team. One of NASA's principal simulation development tools is the Trick Simulation Environment. NASA's NExSyS team has been modifying and using Trick and TrickHLA to help develop and test the SpaceFOM.The System Modeling And Simulation Hub Laboratory (SMASH-Lab) at UNICAL has developed the Simulation Exploration Experience (SEE) HLA Starter kit, that has been used by most SEE teams involved in the distributed simulation of a Moon base. It is particularly useful for the development of federates that are compatible with the SpaceFOM. The HLA Starter Kit is a Java based tool that provides a well-structured framework to simplify the formulation, generation, and execution of SpaceFOM-compliant federates.Pitch Technologies, a company specializing in distributed simulation, is utilizing a number of their existing HLA tools to support development and testing of the SpaceFOM. In addition to the existing tools, Pitch has developed a few SpaceFOM specific federates: Space Master for managing the initialization, execution and pacing of any SpaceFOM federation; EarthEnvironment, a simple Root Reference Publisher; and Space Monitor, a graphical tool for monitoring reference frames and physical entities.Early testing of the SpaceFOM was carried out in the SEE university outreach program, initiated in SISO. Students were given a subset of the FOM, that was later extended. Sample federates were developed and frameworks were developed or adapted to the early FOM versions.As drafts of the standard matured, testing was performed using federates from government, industry, and academia. By mixing federates developed by different teams the standard could be tested with respect to functional correctness, robustness and clarity.These frameworks and federates have been useful when testing and verifying the design of the standard. In addition to this, they have since formed a starting point for developing SpaceFOM-compliant federations in several projects, for example for NASA, ESA as well as SEE

    PV systems on the apartment buildings of Uppsalahem : Economic potential until 2030

    No full text
    Uppsalahem is the leading housing corporation in Uppsala with its over 160 real estate properties. Uppsalahem is owned by the municipality of Uppsala, which has a climate and energy goal that aims for 100 MW of solar energy to be installed in Uppsala by 2030. The 100 MW goal, combined with Uppsalahem’s environmental policy, is a strong incentive to investigate the possibility of installing PV modules on the many available roof areas that Uppsalahem possesses. The objective of this thesis is to create a foundation for future decisions regarding PV systems for Uppsalahem. The economic potential for PV systems on apartment buildings until 2030 was therefore calculated. The calculations were made in a computer model created in Matlab that can be used by Uppsalahem for future decision-making. Uppsalahem owns a 2,0 MWp wind power plant that is expected to supply 35 % of the total electricity use of the corporation. The electricity produced in the plant is tax exempt, under the condition that no electricity, including PV produced electricity, is sold by Uppsalahem. As any surplus electricity cannot be sold, the profitability of all PV installations is determined largely by the electricity use of each building. The economic PV potential was calculated for 11 scenarios starting from a base scenario that was based on the parameters deemed most likely to be true. In the base scenario, where no electricity certificates or investment support were used, the potential was 0,30 MWp 2015 and 1,59 MWp 2030. If electricity certificates or investment support is used, the potential in 2015 is 1,13 and 1,64 MWp, respectively. For 2030 the potential increases to 1,90 and 2,10 MWp. In the base scenario, PV installations can supply 1,4 % of Uppsalahem’s annual electricity use in 2015 and in 2030 1,6 % of the 100 MW goal can be met by Uppsalahem.

    Multi-agent swarm control in virtual worlds

    No full text
    Flocking birds in a virtual world through adaption of Craig Reynolds, Boids algorithm. In this paper I will demonstrate how I adapted the Boids algorithm to an already existing code to create a flocking behaviour and discuss options to the solutions. I have been given a virtual world with existing birds that is moving around based on random elements that in a way mimics flying

    PV systems on the apartment buildings of Uppsalahem : Economic potential until 2030

    No full text
    Uppsalahem is the leading housing corporation in Uppsala with its over 160 real estate properties. Uppsalahem is owned by the municipality of Uppsala, which has a climate and energy goal that aims for 100 MW of solar energy to be installed in Uppsala by 2030. The 100 MW goal, combined with Uppsalahem’s environmental policy, is a strong incentive to investigate the possibility of installing PV modules on the many available roof areas that Uppsalahem possesses. The objective of this thesis is to create a foundation for future decisions regarding PV systems for Uppsalahem. The economic potential for PV systems on apartment buildings until 2030 was therefore calculated. The calculations were made in a computer model created in Matlab that can be used by Uppsalahem for future decision-making. Uppsalahem owns a 2,0 MWp wind power plant that is expected to supply 35 % of the total electricity use of the corporation. The electricity produced in the plant is tax exempt, under the condition that no electricity, including PV produced electricity, is sold by Uppsalahem. As any surplus electricity cannot be sold, the profitability of all PV installations is determined largely by the electricity use of each building. The economic PV potential was calculated for 11 scenarios starting from a base scenario that was based on the parameters deemed most likely to be true. In the base scenario, where no electricity certificates or investment support were used, the potential was 0,30 MWp 2015 and 1,59 MWp 2030. If electricity certificates or investment support is used, the potential in 2015 is 1,13 and 1,64 MWp, respectively. For 2030 the potential increases to 1,90 and 2,10 MWp. In the base scenario, PV installations can supply 1,4 % of Uppsalahem’s annual electricity use in 2015 and in 2030 1,6 % of the 100 MW goal can be met by Uppsalahem.

    PV systems on the apartment buildings of Uppsalahem : Economic potential until 2030

    No full text
    Uppsalahem is the leading housing corporation in Uppsala with its over 160 real estate properties. Uppsalahem is owned by the municipality of Uppsala, which has a climate and energy goal that aims for 100 MW of solar energy to be installed in Uppsala by 2030. The 100 MW goal, combined with Uppsalahem’s environmental policy, is a strong incentive to investigate the possibility of installing PV modules on the many available roof areas that Uppsalahem possesses. The objective of this thesis is to create a foundation for future decisions regarding PV systems for Uppsalahem. The economic potential for PV systems on apartment buildings until 2030 was therefore calculated. The calculations were made in a computer model created in Matlab that can be used by Uppsalahem for future decision-making. Uppsalahem owns a 2,0 MWp wind power plant that is expected to supply 35 % of the total electricity use of the corporation. The electricity produced in the plant is tax exempt, under the condition that no electricity, including PV produced electricity, is sold by Uppsalahem. As any surplus electricity cannot be sold, the profitability of all PV installations is determined largely by the electricity use of each building. The economic PV potential was calculated for 11 scenarios starting from a base scenario that was based on the parameters deemed most likely to be true. In the base scenario, where no electricity certificates or investment support were used, the potential was 0,30 MWp 2015 and 1,59 MWp 2030. If electricity certificates or investment support is used, the potential in 2015 is 1,13 and 1,64 MWp, respectively. For 2030 the potential increases to 1,90 and 2,10 MWp. In the base scenario, PV installations can supply 1,4 % of Uppsalahem’s annual electricity use in 2015 and in 2030 1,6 % of the 100 MW goal can be met by Uppsalahem.

    Bat Activity at a Small Wind Turbine in the Baltic Sea

    No full text
    Activity of bats at an old wind park four km off the island of Gotland in the Baltic Sea was monitored during 50 nights from August to October 2013, using an automatic bat detector (Pettersson D500-X) mounted on one of the turbines. Single individuals or pairs of common noctules Nyctalus noctula were recorded on five occasions only (26 and 27 August), all in calm weather and when little or no rotor movement occurred. Since such conditions were unusual (five of 50 nights of observation) the visits by the bats were unlikely to be chance events (migrating bats passing the turbine), but more likely involved bats attracted to the turbines. However, no feeding buzzes were recorded and the bats never stayed near the turbine more than one minute. The turbines studied are lit by 250 W white lights and this could have been the reason why bats visited the turbines, because such lights potentially attract insects. The bats could not have been attracted to the turbines by any factor related of the movement of the rotor or the generator, such as Doppler-effects, noise, heat or electric fields

    The Effects of Foods on Blood Lipids in Non-alcoholic Fatty Liver Disease (NAFLD)-A Systematic Review and Meta-Analysis

    No full text
    Background: Non-alcoholic fatty liver disease (NAFLD) is associated with dyslipidemia and increased cardiovascular disease risk. Dietary choices may produce profound effects on blood lipids. Thus, the purpose of this study was to investigate which foods modify blood lipids in NAFLD. Methods: Systematic review of published systematic reviews and randomized controlled trials (RCTs). Searches were performed in PubMed, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials, from inception through March 2020. Studies in populations with NAFLD, which provided data on foods or dietary patterns and blood lipids were included, but not weight loss diets, supplements, nor individual nutrients. The strength of evidence was evaluated using The Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results: No relevant systematic reviews were identified. Eleven RCTs were included in the qualitative synthesis. Two RCTs were included in meta-analyses, regarding the comparison between Mediterranean and Low-fat diets, in which there were no clear effects on either high-density lipoprotein cholesterol or triglycerides, with Low evidence. From single RCTs, there was Moderate evidence for reduced triglycerides by a healthy dietary pattern, compared with usual care; and for reduced total cholesterol by a probiotic yogurt, enriched with Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12, compared with conventional yogurt. For all other comparisons, the evidence was considered as Low or Very low. Conclusion: Few studies were identified which reported effects of foods on blood lipids in subjects with NAFLD. The possible beneficial effect of probiotics warrants further study. PROSPERO identifier: CRD42020178927
    corecore